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SUMMARY 
A new finite element technique has been developed for employing integral-type constitutive equations in 
non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the 
interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open 
and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity 
increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent 
predictor+orrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new 
method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the 
K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The 
important question of mesh refinement and convergence for integral models in complex flow at high flow 
rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In 
addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels 
without numerical instability, compared with the best available similar calculations in the literature. 
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1. INTRODUCTION 

In the last few years rapid progress has been made in numerical simulation of non-Newtonian 
flows employing memory integral constitutive equations. Several independent studies'-4 have 
demonstrated that much potential lies in memory integral models for the realistic simulation of 
viscoelastic fluids such as polymer melts. In particular, the K-BKZ integral model has been used 
quite successfully in several attempts to quantitatively predict the behaviour of real non- 
Newtonian fluids of commercial importance. Luo and used a streamline finite element 
method (SFEM) to predict the extrudate swell of a fully characterized, low-density polyethylene 
(LDPE) melt from long' and short2 circular dies. The K-BKZ integral-type model with multiple 
relaxation times used in their study provides good fits of both shear and elongational viscosity 
data. The predicted swelling ratio agreed well with experiments, and the well-known phenom- 
enon of enhanced elastic recovery when extrusion takes place from short dies was very well 
captured by the simulation.2 More recently, Luo and Mitsoulis4 used the same method to study 
memory phenomena in extrudate swell of a high-density polyethylene (HDPE) melt from straight 
and tapered annular dies. The results showed that the diameter swell is highest for converging, 

0271-2091/90/151015-17$08.50 
0 1990 by John Wiley & Sons, Ltd. 

Received 10 July 1989 
Revised 10 January 1990 



1016 X.-L. LUO AND E. MITSOULIS 

followed by straight and then diverging dies, in qualitative agreement with experimental findings 
in the literature, but in sharp contrast with previous  simulation^^.^ with the Newtonian and 
Maxwell constitutive equations, which yielded the wrong trend (opposite to experimental 
findings). 

The SFEM scheme developed by Luo and Tanner' consists of building special elements on the 
updated streamlines obtained from solving a Poisson equation for the streamfunction from the 
known velocity field. Since all element nodal points fall on a few open streamlines, the particle- 
tracking and strain tensor calculations are conveniently done on these streamlines by integrating 
upstream along them. The use of the special streamline elements makes the handling of memory 
integral models relatively easy, but on the other hand makes it difficult to deal with flows with 
recirculations, in which the domain cannot be adequately covered by open streamlines. 

For the particle tracking 
they use parametric equations in terms of a scalar parameter within each element to identify the 
trajectory of a material point. To calculate the strain history, a scalar function is introduced to 
relate the components of a material vector at different locations on the pathline. A differential 
equation for this scalar function has been derived and it can be solved numerically by integrating 
along the pathline. With this scalar function known, the material vector is fully determined and 
one is then able to form a complete set of scalar equations for calculating the components of the 
deformation gradient tensor F. The time integral for the stress is transformed into a line integral, 
and a Gaussian integration rule is employed on each segment. Employing this method and the 
same K-BKZ integral model as used by Luo and Tanner,' Dupont and Crochet3 simulated the 
flow of an LDPE melt through abrupt circular contractions. Fitting shear viscosity and normal 
stress data obtained experimentally by White and Kondo,* they were able to successfully simulate 
vortex growth at relatively low flow rates (hence elasticity levels expressed as a dimensionless 
stress ratio S,).  The predicted vortex opening angle 4 as a function of S ,  agreed well with 
experimental measurements. However, their method failed to converge for values of S ,  > 1.7, 
although experimental measurements go well beyond this range. Another drawback of this 
method is its lack of efficiency and associated high cost. 

Obviously, further work was needed to develop a low-cost numerical technique for fluids of the 
integral type, which can deal with recirculation and converge at high elasticity levels. This paper 
will present such a scheme and apply it to simulations of significance in non-Newtonian fluid 
mechanics. The important question of mesh refinement and convergence for integral models in 
complex flow at high elasticity level will also be addressed. 

A more general approach has been taken by Dupont and 

2. NUMERICAL METHOD FOR MEMORY INTEGRAL MODELS 

The flow is governed by the conservation equations of mass and momentum. For an incom- 
pressible fluid under isothermal, creeping flow conditions (Re=O) we have 

v.v=o, (1) 

o= -Vp+V-r ,  (2) 
where v is the velocity vector, r is the extra-stress tensor and p is the scalar pressure. The 
constitutive equation that relates r to the deformation history is a K-BKZ equation proposed by 
Papanastasiou et aL9 and is written as 

a s' [ c ; (-31 (a - 3) + PI, -  I + (1 - P ) I ,  C; (t')dt', - m  
(3) 
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where t is the present time and t' is a time variable, & and a, are the relaxation times and 
relaxation modulus coefficients at  a reference temperature To, CI and /3 are material constants, and 
I ,  and I,- I are the first invariants of the Cauchy-Green tensor C, and its inverse C; l ,  the Finger 
strain tensor. 

The Maxwell model of the integral type is of particular importance in the development of 
numerical techniques for integral models, because it has a simple differential counterpart and 
because some analytical solutions exist in a few simple cases. The Maxwell integral model is given 
by 

where ~f, is the constant viscosity. 
Special numerical schemes are required for the implementation of integral-type constitutive 

equations in finite elements. We will base our present study on the previous work by Luo and 
Tanner' and modify the SFEM scheme to overcome the problem of recirculation in such flows as 
the abrupt contraction. In particular, the finite element formulation for the conservation 
equations, the decoupled iterative algorithm for dealing with the non-Newtonian stresses and the 
basic approach to the calculation of the strain tensors will all be kept unchanged. These details 
have been fully described elsewhere' and hence we will concentrate our attention here on 
developing a new particle-tracking and strain tensor calculation scheme without the limitation of 
open streamlines. 

2.1. Particle tracking 

Since equation (3) takes into account the entire past history of a particle, it is essential to find 
numerically the particle position as a function of residence time t - t'. Previously in the SFEM 
formulation the task of particle tracking was simplified by the formation of the special streamline 
elements in which the element boundaries are the updated streamlines. In the presence of closed 
streamlines (recirculating regions) along with open streamlines it is not practical to build 
streamline elements in the whole flow domain, and it is more convenient to use conventional 
elements. In this case the particle tracking has to be done individually for every nodal point. For 
steady flows the particle acceleration can be expressed by the velocity field as 

DvfDt = v * VV. ( 5 )  
Making use of the above expression, we propose here the following step-by-step particle- 

tracking scheme: 

XI = x - uds + $ ( U; + u E)o +$ [ ( u  $ + u $ ) ~  - ( u  + u ; ) ~ ]  + 0(ds4), 

where (x', y') are the particle co-ordinates at time t' and (x, y) are the co-ordinates at t '+ds 
(ds>O); the subscript '0' indicates the location at (x, y), while the subscript '1' indicates the 
location at  (xl, y l )  which are given by 
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In obtaining equations (6) and (7), the finite difference approximation for the particle derivative of 
the particle acceleration at (x, y) has been used: 

d3x da a,-ao 
ds3 ds ds + 0 (ds), - -- 

where a, and a, are the particle accelerations at (xo, yo) and (x,, yl) respectively. We point out 
that equations (6) and (7) only involve velocity components and their first derivative, yet they 
yield a third-order accuracy for each step of particle tracking, provided the velocity gradients are 
exact. The high order of accuracy in this scheme along with a small time step ds are essential for 
accurate particle tracking, since the maximum time lapse required by a multiple-relaxation-time 
model is usually large and the error in each time step may accumulate. Such is not the case when 
using the SFEM technique, where the entire particle pathline is predetermined from the Poisson 
equation solution. 

Equations (6)-(9) give the particle location (x’, y’) as a function of the residence time, which is 
essential for the calculation of the deformation tensor F as a function of the residence time. 

2.2. Strain tensor calculation 

As described in Reference 1, the following relations are used in finding the strain history of a 
particle located at a nodal point at the present time t: 

DF(s)/’Ds= -L(s)F,(s), (1 1) 

Is = 0 = I, 

C;’(S)=F,(S)-~(F~(S)~)-’, 

where s = t - t‘ is the residence time of the particle, L(s) is the velocity gradient tensor, F(s) is the 
deformation gradient tensor relative to the present configuration, C- ’ (s) is the Finger strain 
tensor and I is the unit tensor. Previously in the SFEM formulation, equation (1 1) was integrated 
upstream along element boundaries which are the streamlines. In the present case, where no 
special elements are constructed and the particle history tracking is done point by point, an 
efficient way to numerically integrate equation (1 1) is the key to the overall efficiency of the 
scheme. To be consistent with the particle-tracking procedure described in the previous section, 
an improved Euler method, i.e. the predictor-corrector formula, is chosen for calculating the 
tensor F: 

F,(t’) = I - (d~/2)(L + L’ - dsL’ L) + 0(ds3), (14) 

where ds = t - t’, L is the velocity gradient at (x, y) and L is evaluated at the new location (x’, y’). 
As explained in Reference 1, the time step ds is always controlled to be small (typically a small 
fraction of the characteristic time or the relaxation time in the flow), and for every time step we 
take the configuration at the current time as the reference configuration. In this way the starting 
deformation tensor for every time step is always exactly known (the unit tensor), thus avoiding 
error accumulation due to an incorrect initial value for F. Also note that equation (1 1) contains 
only the velocity gradient tensor, and no higher derivatives of the velocity are involved. 
Furthermore, it is accurate to second order, one order less than the particle tracking, which is 
considered to be consistent. It is worth mentioning that although the accuracy achieved here is 
only second-order, while the Runge-Kutta integration employed previously in the SFEM 
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formulation’ was fourth-order, we believe the overall performance of the improved Euler method 
used here will be as good as the Runge-Kutta method for the following reason: the accuracy for 
calculating F with both methods is limited in the same way by the accuracy of the numerical 
differentiation of the velocity, i.e. the calculation of L. In other words, the fourth-order accuracy 
of the Runge-Kutta integration is only ‘apparent’ and the second-order improved Euler method 
can be sufficiently accurate if the truncation error ( -  O(ds3)) is controlled to be less than the error 
introduced in the calculation of L. Note that errors in computing L cannot be reduced with 
smaller ds. 

The component form of equation (14) for the axisymmetric case (r ,  z ,  0) can be written as 
follows: 

FeO=r‘/r, (19) 

where the primes indicate the values at location (x’, y’). Note that the expression for Fee has no 
truncation error. On the centreline, where equation (19) becomes indeterminate, one can easily 
prove that 

Feo = FVr (20) 
When there is a solid wall present on which the particle velocity is zero, the following 

exact relation” can be used to directly compute the Cauchy-Green tensor over a finite time 
difference s: 

C=I-sA,  +9s2A2, (21) 

where A ,  and A, are the first and second Rivlin-Ericksen tensors and s = t - t’ is the residence 
time. 

Equation (14) gives only the ‘local’ relative deformation tensor concerning two endpoints on 
the current increment ds. In order to integrate the constitutive equation we need to calculate the 
‘global’ relative deformation tensor concerning the Laguerre points’ and the starting point, i.e. 
the nodal point. As was done in Reference 1, the following chain rule is repeatedly used to connect 
all the ‘local’ F(ds) to obtain the desired ‘global’ deformation tensor F,(t’): 

F,; ( t i )  = Ff5(t;)Fti(t;), ti  <ti <ti .  (22) 
The Finger strain tensor C-’(s) can easily be computed from the tensor F according to 

equation (1 3). 

2.3. Velocity gradient field 

Apparently, both the particle-tracking and strain tensor computations need the calculation of 
the velocity gradient to be as accurate as possible. Unfortunately, the conventional finite element 
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interpolation for the velocity field generally yields discontinuous velocity gradients at element 
boundaries. To avoid this discontinuity, the usual approach is to take a simple average of the 
values calculated from the several neighbouring elements around the nodal point considered. 
However, we adopted here a slightly different approach to obtain a better average value of the 
velocity gradient. 

Let L = C  ViL6 be the finite element representation for the velocity gradient field. Here the Vi 
are linear interpolation functions. The Galerkin discrete form for the equation L = dv/dx can now 
be written as 

where vJ is the known velocity value at the jth nodal point and the Oj are quadratic interpolation 
functions. The solution of equation (23) gives a continuous, smooth velocity gradient field, based 
on which one can more conveniently perform the particle-tracking and strain tensor calculations 
as described above. 

2.4. Iterative scheme 

When using an integral-type constitutive equation, successive substitution (Picard iteration) 
has been the basic scheme for pursuing the calculations since the evaluation of the integral 
stresses requires knowledge of the velocity field. Another point of major concern in non- 
Newtonian flow simulation is how to reach high flow rates or high elasticity levels from the 
Newtonian solution. For simple models like the Maxwell model it is always possible in principle 
to fix the flow rate while only increasing the relaxation time A to advance the elasticity level, which 
is proportional to the value of 1. However, in actual simulations of experimental results the flow 
rate cannot be fixed and the material parameters are predetermined to fit the material properties. 
Thus thejow rate increment scheme is a natural way of reaching high flow rates or elasticity levels 
when simulating experimental results. In this case one starts at a low flow rate and further 
increases it step by step to reach any desired flow rate value. However, previous numerical 
experiments4 have shown that this approach sometimes leads to divergence at high flow rate. This 
is partially due to the relatively large change in upstream velocity profiles when increasing the 
flow rate. 

In our previous work4 we adopted a more stable iterative scheme in which the flow rate was 
fixed while the elasticity level was increased step by step. We call this approach the elasricity 
increment scheme. In this approach an artificial parameter w (0 < w < 1) is introduced for 
controlling the elasticity level in the flow: 

7*=wT+(1-w)70 (24) 
where T* is the apparent stress which actually enters in the calculation, T is the actual non- 
Newtonian stress calculated from equation (3) and T~ is the Newtonian viscous stress. Compared 
with the flow rate increment scheme, the elasticity increment causes much smaller changes in the 
upstream velocity profile. For instance, if the flow rate is increased from one unit to two units, the 
relative velocity change will be about 100% in the fully developed upstream region, but if the flow 
rate is fixed at two units and w is increased from zero to one, the relative change in velocity from 
Newtonian to viscoelastic profile will be much less than 100%. Nevertheless, as will be shown in 
the next section, in the present work both the flow rate and the elasticity increment schemes 
showed good convergence at high flow rates and the results from the two different iterative 
schemes agreed very well. The advantage of the flow rate increment scheme, when converged, is 
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that the total computing time required to get solutions at various flow rates is usually less than 
that of the elasticity increment scheme. 

In the case of integral constitutive equations where the viscoelastic stresses are treated as 
pseudo-body forces, the basic direct substitution method (Picard iteration) can be written as 

Av" + 1) = B(v(i)), (25) 

where A is the fluid (stiffness) matrix containing the Newtonian viscous contribution, B is the 
RHS (load) vector containing the viscoelastic stress contribution and v ( ~ )  is the solution vector at 
the ith iteration. The above equation can be modified by the addition of a relaxation factor R to 
the previous iterative solution: 

Av(*) = B(v(~)), (26) 

The relaxation factor R varies between zero and one, with R=O being the standard Picard 
iteration case. Equations (26) and (27) apply to both the flow rate and the elasticity increment 
schemes. 

3. ABRUPT CONTRACTION FLOW OF LDPE MELTS 

We now proceed to solve some complex problems to test the ability and efficiency of the program. 
One of the most challenging problems in non-Newtonian flow simulations is no doubt the 
polymer entry flow through abrupt contractions. This problem has a simple flow geometry but at 
the same time exhibits significant viscoelastic effects. A better understanding of this flow will 
ultimately lead to improvement of predictions for such polymer flow processes as extrusion and 
injection moulding, where many contractions and expansions may be involved. Until now many 
attempts to solve this problem have concentrated on using the Maxwell-type differential 
constitutive equations and failed to give even qualitative predictions for polymer melts of 
industrial importance. Nevertheless, the upper-convected Maxwell model has both differential 
and integral forms and it is a good test to compare numerical results of integral schemes with 
those of its differential counterpart in complex flows where no analytical solution can be found. 
We first solved the 4:l  circular abrupt contraction problem using the integral Maxwell model 
(equation (4)) and the newly developed scheme, and the results were compared with those 
obtained previously by Luo and Tanner' using the differential form of the Maxwell model. We 
found that the two solutions were numerically identical in terms of streamline/vortex patterns 
and the non-Newtonian stress field. For details of the numerical solution see Reference 11. 

It is believed that the recent work by Dupont and Crochet3 mentioned earlier in this paper is 
the first successful attempt to simulate LDPE melts in abrupt contraction flow, although their 
calculation failed to converge beyond a moderate flow rate or elasticity level. Different finite 
element meshes were used in Reference 3 and the results showed satisfactory mesh independence. 
Regarding the results of Dupont and Crochet3 as reliable and independent of mesh influence, we 
can further test our new integral method by solving the same 4:l  circular contraction flow 
problem with the same K-BKZ model and material parameter data. Table I shows values of the 
relaxation times %k and the relaxation modulus coefficients ak along with the parameters ff and p 
as used by Dupont and Crochet3 in their work. Figure 1 plots the model predictions for shear and 
elongational viscosities and normal stresses. Dupont and Crochet3 compared the resulting curves 
of shear viscosity qs and first normal stress difference N ,  with those obtained experimentally by 
White and Kondo' for characterizing their LDPE melts. It was found that the shear properties 
based on parameters in Table I and equation (3) compared satisfactorily with the experimental 
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Table I. Material parameter values used in equation (3) for 
fitting data of LDPE melts at 160°C (a= 14.38, j=0.018) 

7.01 x 1 0 - 5  
7.01 x 10-4 
7.01 x 10-3 
7.01 x lo-' 
7.01 x lo- '  
7.01 x 10' 
7.01 x 10' 
7.01 x 10' 

Id 
10.' lo& lo-' lo" 101 Id Id 

Shear (Elongational) Rate, y (k) (1,'s) 

Figure 1. Model predictions of shear viscosity qs,  first normal stress difference N ,  and elongational viscosity qE for LDPE 
at 160°C using equation (3) 

data, especially at low shear rates. For the elongational viscosity curve a value of 8=0.018 has 
been assumed as done in earlier w o r k ~ ' * ~ * ~  to describe a strain-thickening behaviour of LDPE 
melts. 

Referring to Figure 2, let Lo and L,,, be the lengths of the downstream and upstream tubes 
respectively and let Ro be the radius of the downstream tube. For our calculations we have chosen 
the ratios Lo/Ro and Lres/Ro to be 30 and 16 respectively. For the boundary conditions we 
assume there is no slip along the walls and impose a fully developed velocity profile at the entry 
and exit sections. The relative strain tensor upstream of the entry section is calculated on the basis 
of the fully developed velocity profile. The computations were performed originally with mesh M2 
shown in Figure 3(a) in its full length. M2 contains 300 elements, 1007 nodes and 2368 degrees of 
freedom for the velocity components and the pressure. Figure 3(b) shows a partial view of the 
finite element mesh near the die entry. Meshes coarser and finer than the one in Figure 3 have also 
been tried and results showed satisfactory mesh independence as discussed later in Section 4. 
Note that the mesh in Figure 3 is finer than either of the two meshes used by Dupont and 
C r ~ c h e t . ~  

An appropriate flow parameter needs to be chosen to describe the solution in this complex case. 
One of them is the apparent shear rate r which is defined as 
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Vortex Detachment f 1 tcontraction 
Plane Vortex Plane 
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Figure 2. Schematic diagram of the circular abrupt contraction geometry and definition of the vortex opening angle 4 

4.0 

3.0 

2.0 

1.0 

0.0 
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 

z/R, 
Figure 3. (a) Full finite element mesh containing 300 elements (M2) originally used in the 4: 1 circular abrupt contraction 
computation. (b) Partial view of the finite element mesh near the contraction entrance (the mesh extends upstream 

to - 16 R, and downstream to + 30 R,)  

where vo is the average axial velocity in the downstream tube. With a fixed flow rate Q or 
apparent shear rate r one can calculate the corresponding value of the fully developed shear rate 
vw on the downstream wall and hence the dimensionless recoverable shear (or stress ratio) SR, 
which is the ratio of the first normal stress difference N, to twice the shear stress t,, i.e. 

SR = N 1 /2tw. (29) 
We first used theJlow rate increment scheme to obtain solutions from low to high flow rates. The 

calculation started as usual from a low-flow-rate solution and we increased the apparent shear 
rate value r to reach higher elasticity levels. As reported by Dupont and Crochet,' their 
calculations converged up to a value of r=4 s - l ,  beyond which they failed to obtain a solution. 
However, our calculations have reached r=70 s- '  (9, = 104 s - l ,  SR=2-5) with good conver- 
gence, and we stopped increasing r because of lack of interest. It took about 17 min CPU time on 
a VAX-11/780 to complete one iteration with the mesh shown in Figure 3. 

It is interesting to compare our results with those of Dupont and C r ~ c h e t . ~  Confirming their 
results, we have also found that the flow solution is characterized by an early growth of the corner 
vortex. Figure 4 shows the streamline/vortex patterns at various r-values. The first two patterns 
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-4.0 -2.0 0.0 2.0 4.0 -4.0 -2.0 0.0 2.0 4.0 -4.0 -2.0 0.0 2.0 4.0 

r/R, r/R, r/R, 
Figure 4. Streamline/vortex patterns at r-values of 2, 4 and 30 s - '  for the flow of an LDPE melt in a 4: 1 circular 
contraction (data given in Table I). The patterns for r=2 and 4s- '  correspond to results by Dupont and Crochet3 

for r = 2 and 4 s -  correspond to the results by Dupont and C r ~ c h e t . ~  The virtual identity of the 
flow patterns between the two works is remarkable. However, our work extends to higher 
r-values and we also show in Figure 4 the pattern for = 30 s-  '. We see that the size of the entry 
vortex continues to increase with shear rate, but the increase slows down at higher shear rates 
where the increase of S ,  with r also slows down. 

In order to quantify the vortex intensity, we can compute the maximum difference between the 
streamfunction value in the vortex region and the value on the wall. The relative vortex intensity 
is then calculated as the ratio of this maximum difference to the flow rate in the main stream 
according to 

where ILW and t j C l  are the streamfunction values at the wall and centreline respectively. In Figure 5 
we have plotted the relative vortex intensity as a function of S,, in comparison with 
results by Dupont and C r ~ c h e t . ~  The agreement between the two is good. 

The vortex size can be quantified by the opening angle 4 defined schematically in Figure 2. We 
plot the opening angle 4 as a function of S, in Figure 6. The agreement between our prediction 
and that of Reference 3 is very good. Another important quantity is the entrance correction nen 
corresponding to excess pressure losses AP,,, over and above the fully developed flow value owing 
to contraction. The definition of nen is given by 

A P -  AP,,, - APO 
nen = 

2 t W  
9 

where AP is the total pressure loss in the system and AP,,, and APo are the pressure losses based 
on the fully developed flow in the upstream and downstream tubes respectively. Figure 7 shows 
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Figure 6. Opening angle 4 as a function or S, in a 4: 1 circular contraction (LDPE): -, this work; A ,  Dupont and 
Crochet 

our prediction for nen as a function of S, for the 4: 1 contraction flow together with data from 
Reference 3. We find that the entrance correction exhibits a large increase as S ,  increases, in 
agreement with data from Reference 3 and the general trend found in experimental studies.'2*'3 

4. MESH REFINEMENT AND CONVERGENCE STUDIES 

The most serious problem in the numerical simulation of non-Newtonian flow used to be the 
high- Weissenberg-number problem, i.e. numerical computations became unstable at relatively 
high values of the Weissenberg number, which is a measure of the elasticity strength in the flow 
and can be shown to be equivalent to S, used in this work. However, a few recent works,'S3 
including the present one, have convincingly shown that a computation of a complex viscoelastic 
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flow does not necessarily fail as a result of reaching high elasticity levels if a realistic constitutive 
model as well as a stable algorithm are used. This is not to say the problem has been completely 
solved, since faster, more accurate and more general algorithms for non-Newtonian flow 
simulation will always be in demand. In particular, when there is no instability in the com- 
putation, a few problems concerning numerical aspects will still be present: mesh dependence of 
results, convergence speed and relative errors. This section is devoted to these important 
questions. We intend to evaluate realistically the performance of the present algorithm through a 
mesh refinement and convergence study. 

So far the results for the 4:l contraction flow were obtained by using the 300-element mesh 
shown in Figure 3. To find out the extent of mesh dependence we used two more meshes to carry 
out the same 4: 1 contraction calculations: a coarser one with 200 elements (Ml) and a finer one 
with 400 elements (M3). Table I1 gives useful information about the three meshes used and the 
corresponding CPU time per iteration. The results from different meshes will be compared at 
fw= 104 s - l  (r= 70 s - l ,  S ,  =2.5), which corresponds to the highest flow rate for which we have 

-.- 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Stress Ratio, S, 

Figure 7. Entrance correction ncn as a function of S, in a 4: 1 circular contraction (LDPE): -, this work; A ,  Dupont 
and Crochet3 

Table 11. Mesh characteristics of the three different finite element meshes used in the computations 

Number of 
Number of Number of degrees of Size of corner CPU time* 

Mesh elements nodes freedom element ( r  x z) (seconds/iteration) 

M1 200 689 1623 0.18 x 0.22 
M2 300 1007 2368 0.04 x 0.09 
M3 400 1317 3093 0.01 x 0.07 

320 
loo0 
1650 

* On a VAX-11/780 computer. 
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computed with the 300-element mesh (M2). Furthermore, we have used here the elasticity 
increment scheme for the two new meshes to directly get the results at itw= 104 s-’, while we had 
used before theJIow race increment scheme to get results at different flow (shear) rates for the 
300-element mesh. This is an additional test of our numerical method, since different iterative 
schemes should give the same results for the same problem. 

Figure 8 shows partial views of the 200- and 400-element meshes. In refining the mesh we have 
concentrated more elements near the re-entry corner and close to the walls where the solution is 
most sensitive. As convergence criterion we have taken here the relative difference in the solution 
vector of velocity, which gives rise to the Euclidean norm-of-the-error E defined as 

where i is the current iteration, AvCi)=v(*)-vCi) (referring also to equation (26)) and 11 . 11 is the 
magnitude of a vector. In terms of number of iterations N and the corresponding norm-of-the- 
error E, not much difference was found for the three meshes. Figure 9 plots the relative error as a 
function of the number of iterations. Note here that the number of iterations was counted after the 
full elasticity level was reached, i.e. after the elasticity increment w of equation (24) reached one for 
meshes M1 and M3, and after the full flow rate was reached for mesh M2. This figure clearly 
shows that the convergence speed and accuracy are largely mesh-independent. The relatively 
steep decrease in the value of E, occurring once in each of the three curves in Figure 9, is due to the 
change of the relaxation factor R in equation (27) from zero to 0.5, after which the iterations were 
continued with R=05 

The iteration was very stable even after as many as 70 iterations, and the relative error 
decreased monotonically with the number of iterations to the order of which we believe is 
very satisfactory for a complicated integral model and a complex viscoelastic flow at high flow 
rate. On the other hand, the convergence was relatively slow compared with calculations for 
inelastic cases. l4 Unfortunately, no comparison can be made with any other work which uses the 
same complicated viscoelastic integral model for the same problem and gets convergence at high 
flow rates, since the results shown here seem to be the only ones available in the literature for the 
time being. 
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3.0 

$ 2.0 

g 2.0 

1.5 

0 0  

4 0  

3.0 

1.0 

0.0 
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 

z/R, 
Figure 8. Partial views of different finite element meshes used for convergence studies: (a) 200 elements; (b) 400 elements 

(see also Table I1 for details) 



1028 X.-L. LUO AND E. MITSOULIS 

i 
0 
ii 
L u 
I 

-3 

, I 1 I 
0 10 20 30 40 50 60 70 

Number of Iterations. N 

Figure 9. Norm-of-the-error as a function of number of iterations for the three meshes 

In an attempt to speed up the convergence, we have considered some other alternatives. It is 
well known that a Newton-Raphson iterative algorithm converges faster than Picard iteration, 
but it seems extremely difficult and time-consuming, if not impossible, to perform Newton- 
Raphson iterations when integral-type constitutive equations are used. In the case of integral 
models the residual vector R can be written as 

(33) R(+ + 1)) = Av" + 1) - B ( p )  = 0, 

where A is the fluid (stiffness) matrix, B is the RHS (load) vector and d') is the solution vector at 
the ith iteration. In the Newton-Raphson method one solves for 

- R(v(')), (34) j(,,(9)AVW = 

where J(v(')) is the Jacobian matrix dR(v('))/avci). The evaluation of the Jacobian would involve the 
calculation of either the analytical derivative of B(v(") or the numerical finite difference approx- 
imation of dB/dv, which is not feasible because the stress vector is a complicated functional of the 
entire upstream velocity field. 

The dominant-eigenvalue method"? l 6  provides an alternative for speeding up the convergence 
while keeping the Picard method as the basic iterative scheme. Karagiannis et al.14 performed a 
convergence study for power-law fluids and found that in very non-linear cases (very small power- 
law index) the dominant-eigenvalue method could be faster than the Newton-Raphson method. 
The basic idea is to perform a number of Picard iterations on the equation set, building up an 
iteration history, and then to accelerate the iterative process by predicting the apparent solution 
from the previous iterations. The number of dominant eigenvalues needed is problem-dependent, 
but following Karagiannis et al. we have only tried here the one-dominant-eigenvalue 
approach. According to Crowe and Nishio,16 for the simple one-dominant-eigenvalue case the 
apparent solution vector is predicted as 
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0.7 

Promoting too frequently leads to numerical instability. In our numerical experiments we 
promoted once or twice for every three or five Picard iterations. Unfortunately, we found that the 
performance of the iterations was not consistent, i.e. it sometimes speeded up the convergence, 
sometimes not, compared with the simple Picard iteration. Therefore the overall effect of the 
dominant-eigenvalue method here was not significant. Many more numerical experiments are 
needed to determine whether the simple one-dominant-eigenvalue approach works in the case of 
integral viscoelastic models. It is an open question whether the dominant eigenvalue reflects the 
essential non-linear viscoelastic nature of the equation set as it does in the case of inelastic models. 

We have compared the performances of the three meshes in terms of convergence speed 
measured by number of iterations and in terms of accuracy measured by relative difference in 
velocity. We now proceed to compare the actual solutions among the three different meshes. The 
maximum differences among results of different meshes occur near the singularity in the domain. 
Figure 10 plots predictions by all three meshes of the non-Newtonian stress components T,, and 
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Figure 10. Predictions by all three meshes of the non-Newtonian stress components (a) T~~ and (b) T , ~  along the r = 1.0 line 
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z,, along the r =  1.0 line, which passes through the re-entry corner and coincides with the 
downstream wall. Similar plots for Maxwell stress components have been shown in earlier works 
by Marchal and C r o ~ h e t ' ~  and by Luo and Tanner." Figure 10 shows that the predictions by the 
different meshes indeed agree very well, especially those computed with the 300- and 400-element 
meshes. It is interesting to note that most differences occur after the singularity, which is not very 
hard to explain if we remember we are dealing with fluids with memory, i.e. what happened 
upstream of the singularity will affect the flow downstream, and the effect will fade away as fluid 
particles flow further downstream. Comparing the results of Figure 10 with Maxwell stress plots 
in the same geometry"*'7, a significant difference arises: the K-BKZ model predicts a stress 
overshoot for both T,, and z,, after the singularity, while the Maxwell model predicted none. 
Finally, Figure 11 shows the vortex patterns obtained from the three meshes. They are all almost 
identical with each other. Quantitatively, Table I11 shows important global quantities such as 
vortex opening angle, relative vortex intensity and total pressure drop obtained from the three 
meshes. Again the agreement is very good. This is particularly encouraging since it shows that a 
mesh with 200 elements such as M1 is adequate for obtaining reasonably accurate solutions 
without spending too much CPU time. 

All the comparisons made above have shown good accuracy and very satisfactory mesh 
independence of the calculations, and therefore prove the reliability of our new numerical method 
using integral-type constitutive equations for solving complex viscoelastic flow problems 
encountered in real industrial applications. 
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Figure 11. Vortex patterns obtained from the three meshes at j lW=1O4s- '  (r=70s-', S,=2.5): (a) 200 elements; 
(b) 300 elements; (c) 400 elements 

Table 111. Global quantities obtained from the three meshes at -j, = 104 s- (r = 70 s- ', S, = 2.5) 

Number of Opening Relative vortex Total pressure 
Mesh elements angle 4 intensity -+:,,ax (%) drop AP (MPa) 

~~ 

M1 200 49 13.7 5.61 
M2 300 49 13.4 5.62 
M3 400 48 13.2 5.64 
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5. CONCLUDING REMARKS 

In this paper a new finite element technique has been developed for using integral-type 
constitutive equations in viscoelastic flow simulations that involve recirculating regions. The new 
method has been tested in complex abrupt contraction flows of viscoelastic fluids where reliable 
numerical results are available in the literature. The performance of the new method is further 
evaluated by a mesh refinement and convergence study. It is found that the present method is 
relatively inexpensive and in the meantime can reach higher elasticity levels without numerical 
instability, compared with the best available similar calculations in the literature. The accuracy of 
the numerical results is satisfactory both in terms of relative errors between iterations and in 
terms of mesh independence. 

The present results show that it is now possible to study complex flows with or without 
recirculating regions using realistic integral-type constitutive equations. The range of simulations 
is not restricted to low shear rates but pretty well covers the practical range of operations, and the 
cost is moderate as well. Our current objective is to extend this new scheme to include free 
surfaces and interfaces which occur in multilayer co-extrusion operations in the polymer- 
processing industry. A more fundamental research task is to develop a faster iterative scheme 
for integral-type viscoelastic constitutive equations, taking into consideration the unique 
mathematical characteristics of the non-linear viscoelastic system. 
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